Kalman-filter based Join Cost for Unit

نویسنده

  • Jithendra Vepa
چکیده

We introduce a new method for computing join cost in unitselection speech synthesis which uses a linear dynamical model (also known as a Kalman filter) to model line spectral frequency trajectories. The model uses an underlying subspace in which it makes smooth, continuous trajectories. This subspace can be seen as an analogy for underlying articulator movement. Once trained, the model can be used to measure how well concatenated speech segments join together. The objective join cost is based on the error between model predictions and actual observations. We report correlations between this measure and mean listener scores obtained from a perceptual listening experiment. Our experiments use a state-of-the art unit-selection text-to-speech system: rVoice from Rhetorical Systems Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

This is a placeholder. Final title will be filled later

We introduce a new method for computing join cost in unitselection speech synthesis which uses a linear dynamical model (also known as a Kalman filter) to model line spectral frequency trajectories. The model uses an underlying subspace in which it makes smooth, continuous trajectories. This subspace can be seen as an analogy for underlying articulator movement. Once trained, the model can be u...

متن کامل

Implementation of a Low- Cost Multi- IMU by Using Information Form of a Steady State Kalman Filter

In this paper, a homogenous multi-sensor fusion method is used to estimate the trueangular rate and acceleration with a combination of four low cost (< 10$) MEMS Inertial MeasurementUnits (IMU). An information form of steady state Kalman filter is designed to fuse the output of four lowaccuracy sensors to reduce the noise effect by the square root of the number of sensors. A hardware isimplemen...

متن کامل

Design and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter

This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...

متن کامل

A New Adaptive Extended Kalman Filter for a Class of Nonlinear Systems

This paper proposes a new adaptive extended Kalman filter (AEKF) for a class of nonlinear systems perturbed by noise which is not necessarily additive. The proposed filter is adaptive against the uncertainty in the process and measurement noise covariances. This is accomplished by deriving two recursive updating rules for the noise covariances, these rules are easy to implement and reduce the n...

متن کامل

کاهش تعداد ماهواره‌ها در یک سیستم ناوبری ترکیبی GPS/INS با استفاده از فیلتر ذره‌ای

The estimation of situation in a combinational navigation GPS/INS with least number of satellites is the main purpose of this paper. As inertial measurement unit uses altimeter for height measurement, we can assume which height poses certain amounts, whereas geographical length and width are unknown to us in this paper. The single difference GPS is employed for updating the inertial navigation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003